Voltage control in MV and LV grid
Distributed automation solution

Sami Repo
Tampere University of Technology, Finland
Coordinator of IDE4L project
Content

- IDE4L project
- Problem of voltage control in MV and LV grid
- Proposed voltage control scheme
- Discussion of field demonstrations
Breakthroughs of IDE4L project

WP7 Demonstrations

WP2 Planning tools for distribution network management
- ANM concept
- Target and expansion planning including ANM
- Operational planning including DER uncertainty

WP3 Distribution network automation architecture
- Automation concept
- Smart meter as a sensor
- Testing Platform for monitoring & control systems
- Hierarchical and decentralized automation

WP4 Fault location, isolation and supply restoration
- Decentralized FLISR
- IEC 61850 Distribution Protection System Reconfiguration
- Microgrid interconnection switch

WP5 Congestion management
- Decentralized state estimation and state forecast
- Tertiary control – Network reconfiguration
- Secondary control – Coordination of voltage controllers
- Dynamic tariff

WP6 Distribution networks dynamics
- Aggregator concept
- Optimal scheduling of flexibility
- Transmitting synchro-phasors & real-time model syntheses
- Improved microgrid operation

WP6 Distribution networks dynamics
- Aggregator concept
- Optimal scheduling of flexibility
- Transmitting synchro-phasors & real-time model syntheses
- Improved microgrid operation
Problem of voltage control

[Diagram showing voltage control in an electrical grid with HV, MV, and LV networks, OLTC's operating values, and voltage margins for minimum and maximum load.]
Control hierarchy of congestion management

- **Regulation**
 - Connection requirements
 - Grid tariff
- **Primary and secondary controllers**
 - DSO’s own resources (OLTC, Q-compensation)
 - Contracted control – Non-market based control actions
 - Emergency control
- **Tertiary controller**
 - Network reconfiguration based on forecasts
 - Flexibility services from Commercial Aggregator
 - No direct control of DER. DER activated through the market place
MV grid voltage control scheme

- **SAU = Substation Automation Unit**
 - SAU coordinates IEDs and SAUs below it
 - Coordination by secondary controller
 - Based on real-time monitoring and state estimation

- **IEDs (primary controllers)**
 - AVC of OLTC
 - AVR of DG
LV grid voltage control scheme

- SAU
- SAU - Secondary subst.
- RTU
- IED
- Switch
- Smart meter
- Smart meter
- Switch
- Smart meter
- HEMS
- IED

MV/LV
Secondary controller

• Objective function

\[f(x, u_d, u_c) = C_{losses} \cdot P_{losses} + \sum (C_{cur} \cdot P_{cur}) + \sum (C_{DR} \cdot P_{DR}) + C_{tap} \cdot n_{tap} + \sum (C_{Vdiff} \cdot |V_{i,r} - V_i|) \]

• Inequality constraints

- Feeder voltage limits
 \[V_{lower} \leq V_i \leq V_{upper} \]
- Limits for active power of controllable resources
 \[P_{activeimin} \leq P_{activei} \leq P_{activeimax} \]
- Limits for reactive power of controllable resources
 \[Q_{activeimin} \leq Q_{activei} \leq Q_{activeimax} \]
- Limits for transformer tap ratio
 \[m_{min} \leq m \leq m_{max} \]
- Branch current limits
 \[I_{ij} \leq I_{ijmax} \]

• Load flow equations are nonlinear equality constraints

• Sequential quadratic programming (SQP) algorithm is used
 – In Matlab function fmincon is used
 – SQP algorithm available also in Octave
Real-time monitoring and state estimation

• LV grid ★
 – EV, PV, HP and demand-response schemes mainly affect the LV grid
 – **Monitor the LV grid**

• Data management ★
 – Data coming from heterogeneous system
 – Incomplete: Some nodes are not monitored; Broken/unreachable device
 – Uncertain: Low synchronization accuracy; Measure corrupted
 → **MV & LV State Estimation**
 – **Network Description Update**
Discussion of field demonstrations

• Field is far from ideal environment
 – Lack of resources (finance, controllability, communication, ...)
 – Mix of old and new technologies → Roadmap for automation

• Complexity of system is larger than expected
 – Regulation models → Compromises in general architecture
 – System should work in all conditions (normal, emergency, fault)

• There should be clear business benefits for investments
 – Study of single use case is not enough for an architecture
 – Full benefits of ANM is achieved when network planning principles are also changed → Automation functionality is enabler not a complete solution
Secondary control increase hosting capacity remarkably

3 MW wind turbine in weak 20 kV network
Distance to primary substation 22 km
Results based stochastic MV network analysis
THANK YOU

FURTHER INFORMATION: WWW.IDE4L.EU